WO2014112821A1 - Organic light-emitting diode - Google Patents

Organic light-emitting diode Download PDF

Info

Publication number
WO2014112821A1
WO2014112821A1 PCT/KR2014/000498 KR2014000498W WO2014112821A1 WO 2014112821 A1 WO2014112821 A1 WO 2014112821A1 KR 2014000498 W KR2014000498 W KR 2014000498W WO 2014112821 A1 WO2014112821 A1 WO 2014112821A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
organic light
emitting diode
emitting layer
Prior art date
Application number
PCT/KR2014/000498
Other languages
French (fr)
Korean (ko)
Inventor
김장주
김권현
이성훈
김세용
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2014112821A1 publication Critical patent/WO2014112821A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an organic light emitting diode (OLED), and more particularly, to an organic light emitting diode employing an emission layer (EML) including a host and a phosphorescent dopant.
  • OLED organic light emitting diode
  • EML emission layer
  • Organic light emitting diodes typically include a cathode layer, an electron transport layer, a light emitting layer, a hole transport layer and an anode layer, for example.
  • the electron transporting layer, the light emitting layer, and the hole transporting layer are based on an organic compound.
  • a voltage is applied between the cathode layer and the anode layer, holes are injected from the anode layer through the hole transport layer into the light emitting layer.
  • Electrons are injected from the cathode layer through the electron transport layer into the light emitting layer. Holes and electrons supplied to the light emitting layer recombine in the light emitting layer to form excitons. Excitons dissipate and release energy. The energy emitted from the exciton excites the light emitting material in the light emitting layer. The excited luminescent material changes to the ground state to generate light.
  • the light emitting material of the light emitting layer of the organic light emitting diode may be a fluorescent material excited by singlet excitons, or a phosphorescent material excited by triplet excitons. It is known that the ratio of the singlet excitons to triplet excitons in the light emitting layer is 1: 3.
  • the light emitting material present in the light emitting layer is a fluorescent material, triplet excitons do not contribute to the generation of light and are wasted.
  • the light emitting material present in the light emitting layer is a phosphor, both singlet excitons and triplet excitons may contribute to the generation of light, and thus the internal quantum efficiency of the light emitting layer may reach 100%.
  • the light emitting layer can include an undoped host.
  • the light emitting layer may include a host and a dopant.
  • the host acts as a matrix to form the physical form of the light emitting layer. Dopants are dispersed in the matrix.
  • the light emitting layer includes a undoped host, the host itself may be a light emitting material.
  • the dopant may be a light emitting material, and the host may or may not be a light emitting material.
  • the host may form an excimer, whereby a decrease in color purity and a decrease in efficiency may occur.
  • the light emitting layer including the host and the dopant has an improved color purity and an increase in efficiency through energy transfer, compared to the light emitting layer including the undoped host.
  • the luminous efficiency of the organic light emitting diode has been increased.
  • some of the fabricated organic light emitting diodes have an external quantum efficiency of 29%.
  • the external quantum efficiency of the red organic light emitting diode reached 26%.
  • the luminous efficiency of the organic light emitting diode is still unsatisfactory.
  • the external quantum efficiency of the organic light emitting diode is determined by "external light efficiency x internal quantum efficiency x charge balance". Therefore, by increasing the external light efficiency of the light emitting layer, it is possible to improve the external quantum efficiency of the organic light emitting diode.
  • the present invention provides an organic light emitting diode comprising a light emitting layer of the host / dopant type containing a dopant having improved horizontal alignment.
  • a light emitting layer on the anode layer including a dopant comprising a host including a hole transport material and an electron transport material and an Ir (mphmq) 2 tmd phosphorescent material forming an exciplex;
  • the present invention in the light emitting layer, when a hole transport material and an electron transport material forming an exciplex are used in combination as a host, and an Ir (mphmq) 2 tmd phosphorescent material is used as a dopant, The horizontal orientation of the dopant increases rapidly.
  • the refractive index of the host including the NPB-based hole transport material and the B3PYMPM-based electron transport material forming the exciplex is optically anisotropic, and the Ir (mphmq) 2tmd-based phosphor exhibits an asymmetric chemical structure.
  • the refractive index of the host material having optical anisotropy means that the host material has an orientation in a particular direction. Thus, it is assumed that the orientation of the host material leads to the horizontal orientation of the dopant material.
  • the light emitting layer of the present invention can exhibit much improved external light efficiency. Accordingly, the organic light emitting diode including the light emitting layer of the present invention can have a very improved external quantum efficiency.
  • FIG. 1 is an emission spectrum of the organic light emitting diode of Example 1.
  • FIG. 2 is a measurement result of the horizontal alignment ratio of Ir (mphmq) 2 tmd phosphor in the light emitting layer of the organic light emitting diode of Example 1.
  • FIG. 2 is a measurement result of the horizontal alignment ratio of Ir (mphmq) 2 tmd phosphor in the light emitting layer of the organic light emitting diode of Example 1.
  • FIG. 4 is a relationship between voltage, current density, and light emission luminance of the organic light emitting diode of Example 1.
  • FIG. 5 is a relation between luminance and external quantum efficiency of the organic light emitting diode of Example 1.
  • FIG. 6 is a relation of power efficiency versus luminance for the organic light emitting diode of Example 1.
  • FIG. 7 is a relationship between voltage, current density, and light emission luminance of the organic light emitting diode of Comparative Example 1.
  • a light emitting layer on the anode layer including a dopant comprising a host including a hole transport material and an electron transport material and an Ir (mphmq) 2 tmd phosphorescent material forming an exciplex;
  • Exiplex refers to an excited state charge transfer complex.
  • the host of the light emitting layer includes a hole transport material and an electron transport material, the hole transport material and the electron transport material is a pair of materials forming an exciplex.
  • Hole transport material: electron transport material pairs that form exciplexes include, but are not limited to, NPB: B3PYMPM, TCTA: B3PYMPM, TCTA: TPBi, TCTA: 3TPYMB, TCTA: BmPyPB, TCTA: BSFM, CBP: B3PYMPM, Or NPB: BSFM.
  • the hole transport when the content of the electron transport material is too small compared to the content of the hole transport material, the hole transport is relatively superior, whereas when the content of the electron transport material is too large relative to the content of the hole transport material, the electron transport property is superior.
  • the efficiency can be reduced.
  • the content of the Ir (mphmq) 2 tmd-based phosphor is too small, the efficiency can be reduced.
  • the content of the Ir (mphmq) 2 tmd-based phosphor is too large, dopant excitons may self extinguish themselves, thereby reducing efficiency.
  • the content of the electron transporting material may be about 50 mol parts to about 150 mol parts based on 100 mol parts of the hole transport material.
  • a light emitting layer by the Ir (mphmq) 2 content of tmd-based phosphors, based on the total weight of 100 wt% of the hole transport material, electron transport material and Ir (mphmq) 2 tmd-based phosphor, about 1 wt% to about 20 wt%.
  • the ratio of the horizontally aligned transition dipoles of the dopant in the light emitting layer refers to the ratio of dopant molecules located in parallel with the main plane of the light emitting layer and the direction of the transition dipole among all the dopant molecules in the light emitting layer.
  • the transition dipole moment of the dopant in the light emitting layer has a high horizontal orientation rate
  • the external light efficiency of the light emitting layer increases.
  • Dopants with a vertically oriented dipole moment emit an electric field mainly in a direction perpendicular to the plane of the light emitting layer, whereby the emitted light is either a waveguide mode propagating into the light emitting layer and the transparent electrode layer or a surface plasmon polaritons with a metal electrode.
  • a dopant having a horizontally oriented dipole moment emits an electric field in a direction horizontal to the main plane of the light emitting layer, and the emitted light has a high rate of propagation outside the device. Therefore, as the ratio of the horizontally oriented transition dipole to the vertically oriented transition dipole is higher, the external light efficiency increases and the external quantum efficiency increases.
  • the horizontal orientation of the Ir (mphmq) 2 tmd-based dopant in the light emitting layer is very high.
  • the horizontal orientation of the dopant is about 67%.
  • the external light efficiency of the light emitting layer is only about 25.7%.
  • the horizontal orientation of the Ir (mphmq) 2 tmd-based dopant may be, for example, about 83% to about 89%.
  • the horizontal orientation of the dopant when the horizontal orientation of the dopant is about 89%, the external light efficiency of the light emitting layer may have about 35.8%.
  • each of the anode layer and the cathode layer may be an opaque electrode, a transparent electrode, or a reflective electrode.
  • a positive voltage is applied to the anode layer and a negative voltage is applied to the cathode layer.
  • the opaque electrode may be, for example, alkali metals such as lithium, sodium, potassium, rubidium, cesium, alkaline earth metals such as beryllium, magnesium, calcium, strontium, barium; Metals such as aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium and ytterbium; Two or more of these alloys; Or an alloy of at least one of these with at least one of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin; And it may be a structure comprising at least two of these.
  • the transparent electrode may be, for example, ITO, IZO, ZnO or graphene.
  • the reflective electrode may be formed of, for example, Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a compound thereof, and thereafter, ITO, IZO, ZnO, or graphene may be formed thereon. Can be formed by forming a film.
  • the organic light emitting diode of the present invention may further include at least one of a hole transport layer and a hole injection layer between the anode layer and the light emitting layer.
  • the hole transport layer may preferably include a hole transport material used in the light emitting layer.
  • the hole injection layer may be, for example, a phthalocyanine compound such as copper phthalocyanine, m-MTDATA (4,4 ′, 4 ′′ -Tris (3-methylphenylphenylamino) triphenylamine), TDATA (4,4 ′, 4 ′′ -tris (N , N-diphenyl-amino) triphenylamine), TAPC (1,1-bis- (4-bis (4-methyl-phenyl) -amino-phenyl) -cyclohexane), 2-TNATA (4,4, 4-tris ( N- (2-naphthyl) -N-phenyl-amino) triphenylamine), Pani / DBSA (polyaniline / dodecylbenzenesulfonic acid), PEDOT / PSS (poly (3,4-ethylenedioxythiophene) / poly (4-styrene Sulfonates)), Pani / CSA (poly
  • an electron transport layer and an electron injection layer may be further included between the cathode layer and the light emitting layer.
  • the electron transporting layer may preferably include an electron transporting material used for the light emitting layer.
  • the electron injection layer may include, for example, LiF, NaCl, CsF, Li 2 O, BaO, or a mixture thereof. When both the electron transport layer and the electron injection layer are used, the electron injection layer may be located between the cathode layer and the electron transport layer.
  • the electron transport layer may further include n dopant.
  • the n dopant may be, for example, Rb 2 CO 3 , Cs 2 CO 3 , LiF, or a mixture thereof.
  • an anode layer is formed on a substrate.
  • substrate the board
  • the glass substrate or transparent plastic substrate which is excellent in mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and waterproofness can be used.
  • the substrate can be formed of a transparent glass material mainly containing SiO 2 .
  • the anode layer may be formed using various known methods, for example, a deposition method, a sputtering method or a spin coating method.
  • a hole injection layer is formed on the anode layer.
  • the hole injection layer may be formed on the anode layer using various methods such as vacuum deposition, spin coating, casting, or Langmuir-Blodgett (LB).
  • a hole transport layer is formed on the hole injection layer.
  • the hole transport layer may be formed using various methods such as vacuum deposition, spin coating, casting or LB.
  • An emission layer is formed on the hole transport layer.
  • the light emitting layer may be formed using various methods such as vacuum deposition, spin coating, cast or LB.
  • An electron transport layer is formed on the light emitting layer.
  • the electron transport layer may be formed using various methods such as vacuum deposition, spin coating, casting or LB.
  • An electron injection layer is formed on the electron transport layer.
  • the electron injection layer may be formed using various methods such as vacuum deposition, spin coating, casting or LB.
  • the cathode layer is formed on the electron injection layer.
  • the cathode layer may be formed using various known methods, for example, a deposition method, a sputtering method or a spin coating method.
  • an illumination comprising the organic light emitting diode of the invention.
  • the illumination is an anode layer;
  • a display device comprising the organic light emitting diode of the present invention.
  • the display device includes a transistor including a source, a drain, a gate, and an active layer; And a light emitting layer including an anode layer, a light emitting layer on the anode layer, a dopant including a host including an hole transport material and an electron transport material to form an exciplex, and an Ir (mphmq) 2 tmd phosphorescent material.
  • An organic light emitting diode including a cathode layer disposed on the light emitting layer; a cathode layer or an anode layer of the organic light emitting diode may be electrically connected to one of the source and the drain.
  • Example 1 Fabrication of organic light emitting diodes (light emitting layer: NPB, B3PYMPM and Ir (mphmq) 2 tmd)
  • TAPC was deposited at a deposition rate of 1 ⁇ / s at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation to form a hole injection layer having a thickness of 75 nm.
  • NPB was deposited at a deposition rate of 1 kW / s at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation to form a hole transport layer having a thickness of 10 nm.
  • B3PYMPM was deposited at a deposition rate of 1 kW / s at a vacuum degree of 5 x 10 -7 torr or less to form an electron transport layer having a thickness of 10 nm.
  • the organic light emitting diode of Example 1 was formed by depositing Al to form a 100 nm thick upper electrode at a deposition rate of 4 kW / s at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation.
  • a deposition rate of 4 kW / s at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation.
  • the emission spectrum was obtained using the spectrophotometer (Spectrascan PR 650, Photoresearch). 1 is an emission spectrum of the organic light emitting diode of Example 1.
  • FIG. 1 As shown in FIG. 1, the organic light emitting diode of Example 1 showed a peak at 612 nm and may be suitably used as a red light emitting device.
  • TAPC was deposited at a deposition rate of 1 kW / s at a vacuum degree of 5 x 10 -7 torr or lower by vacuum thermal evaporation to form a hole injection layer having a thickness of 60 nm.
  • TCTA was deposited on the hole injection layer by vacuum thermal evaporation at a deposition rate of 1 kW / s at a vacuum degree of 5 x 10 -7 torr or less to form a 10 nm thick hole transport layer.
  • the molar ratio of TCTA: B3PYMPM was 1: 1 and the content of Ir (ppy) 2acac was 8 wt% based on 100 wt% of the total weight of TCTA, B3PYMPM and Ir (ppy) 2acac.
  • B3PYMPM was deposited at a deposition rate of 1 ⁇ / s at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation to form an electron transport layer having a thickness of 40 nm.
  • LiF was deposited at a deposition rate of 0.01 mW / s at a vacuum degree of 5 x 10 -7 torr or lower by vacuum thermal evaporation to form an electron injection layer having a thickness of 0.7 nm.
  • an organic light emitting diode of Comparative Example 1 was prepared by depositing Al to form an upper electrode having a thickness of 100 nm at a deposition rate of 4 ⁇ / s at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation. It was.
  • NPB On a glass substrate, NPB, B3PYMPM and Ir (mphmq) 2 tmd were respectively deposited at 0.49 ⁇ / s, 0.46 ⁇ / s and 0.05 ⁇ / s at a vacuum degree of 5 x 10 -7 torr by vacuum thermal evaporation.
  • B3PYMPM and Ir (mphmq) 2tmd were simultaneously deposited to form a light emitting layer having a thickness of 30 nm.
  • the molar ratio of NPB: B3PYMPM was 1: 1 and the content of Ir (mphmq) 2tmd was 5 wt% based on 100 wt% of the total weight of NPB, B3PYMPM and Ir (mphmq) 2tmd.
  • the light emitting layer of Reference Example 1 is the same as the light emitting layer used for the organic light emitting diode of Example 1.
  • TCTA, B3PYMPM and Ir (ppy) 2acac were deposited at 0.52 ⁇ / s, 0.4 ⁇ / s and 0.08 ⁇ / s, respectively, on a glass substrate at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation.
  • B3PYMPM and Ir (ppy) 2acac were simultaneously deposited to form a light emitting layer having a thickness of 30 nm.
  • the molar ratio of TCTA: B3PYMPM was 1: 1 and the content of Ir (ppy) 2acac was 8 wt% based on 100 wt% of the total weight of TCTA, B3PYMPM and Ir (ppy) 2acac.
  • the light emitting layer of Comparative Reference Example 1 is the same as the light emitting layer used in the organic light emitting diode of Comparative Example 1.
  • a semi-cylindrical lens made of synthetic quartz is fixed to a sample deposited on a synthetic quartz substrate, and irradiated with a 325 nm laser to emit light.
  • the emitted light passes through a polarizing film and is measured by a photomultiplier tube (PMT) and a monochromator, and rotates by 1 degree and measures from -90 degrees to 90 degrees.
  • PMT photomultiplier tube
  • the orientation rate can be determined.
  • FIG. 2 is a horizontal orientation measurement result of Ir (mphmq) 2 tmd phosphor in the light emitting layer of Reference Example 1.
  • FIG. 3 is a result of measuring the horizontal orientation of the Ir (ppy) 2 acac phosphor in the light emitting layer of Comparative Reference Example 1.
  • FIG. 2 the horizontal orientation of the Ir (mphmq) 2 tmd phosphor in the light emitting layer of Reference Example 1 was 89%.
  • the horizontal orientation of the Ir (ppy) 2 acac phosphor in the light emitting layer of Comparative Reference Example 1 was only 76%. From this, it can be seen that the combination of NPB, B3PYMPM and Ir (mphmq) 2 tmd exerts an unexpected effect of inducing a very good dopant horizontal orientation.
  • Example 1 For the organic light emitting diodes of Example 1 and Comparative Example 1, the relationship between voltage-current density-luminescence brightness was measured using a color research (Photo research spectrophotometer; PR-650) and a power supply (Keithley 2400).
  • FIG. 4 is a relationship between voltage, current density, and light emission luminance of the organic light emitting diode of Example 1.
  • FIG. 5 is a relation between luminance and external quantum efficiency of the organic light emitting diode of Example 1.
  • FIG. 6 is a relation of power efficiency versus luminance for the organic light emitting diode of Example 1.
  • FIG. 7 is a relationship between voltage, current density, and light emission luminance of the organic light emitting diode of Comparative Example 1.
  • FIG. 8 Based on the voltage-current density-luminescence luminance data of FIG. 7, the external quantum efficiency and power efficiency of the organic light emitting diode of Comparative Example 1 were calculated. 8 is an external quantum efficiency and power efficiency of the organic light emitting diode of Comparative Example 1.
  • the organic light emitting diode of Example 1 had a maximum external quantum efficiency of 37.28%, an external quantum efficiency of 36.92% at a luminance of 1000 nit, and an external quantum efficiency of 31.28% at a luminance of 10000 nit.
  • Such performance is that the organic light emitting diode of Example 1, which exhibits an external quantum efficiency of 30% or more even at high luminance, is the best known in the world.
  • the conventional green organic light emitting diode device has a maximum external quantum efficiency of 29%, and the conventional red organic light emitting diode device has a maximum external quantum efficiency of only 26%.
  • the organic light emitting diode of Comparative Example 1 had a maximum external quantum efficiency of 29.1% and an external quantum efficiency of 27.8% at a luminance of 10000 nit. This performance is very poor compared to the organic light emitting diode of Example 1.
  • a combination of a hole transport material and an dopant comprising an Ir (mphmq) 2 tmd phosphorescent material that forms an exciplex for the light emitting layer and an "Im (mphmq) 2 tmd-based phosphor material, greatly improves the dopant horizontal orientation in the light emitting layer. And accordingly, the organic light emitting diode has a very improved external quantum efficiency.
  • the light emitting layer of the present invention can exhibit much improved external light efficiency. Accordingly, the organic light emitting diode including the light emitting layer of the present invention can have a very improved external quantum efficiency.

Abstract

The present invention provides an organic light-emitting diode comprising a light-emitting layer which contains a dopant having improved horizontal orientation properties and employs a host/dopant system. One embodiment of the organic light-emitting diode according to one aspect of the present invention comprises: an anode layer; a light-emitting layer which is disposed on the anode layer and comprises a host comprising a hole transport material and an electron transport material, which form an exciplex, and a dopant comprising an Ir(mphmq)2tmd-based phosphor; and a cathode layer disposed on the light-emitting layer.

Description

유기발광다이오드Organic light emitting diode
본 발명은 유기발광다이오드(organic light emitting diode: OLED)에 관한 것이며, 더욱 상세하게는, 호스트 및 인광 도펀트를 포함하는 발광층(emission layer: EML)을 채용한 유기발광다이오드에 관한 것이다.The present invention relates to an organic light emitting diode (OLED), and more particularly, to an organic light emitting diode employing an emission layer (EML) including a host and a phosphorescent dopant.
유기발광다이오드는 전형적인 예를 들면, 음극층, 전자 수송층, 발광층, 정공 수송층 및 양극층을 포함한다. 유기발광다이오드에 있어서, 통상적으로, 전자 수송층, 발광층 및 정공 수송층은 유기 화합물에 기초한다. 음극층과 양극층 사이에 전압이 인가되면, 정공은 양극층으로부터 정공 수송층을 통하여 발광층으로 주입된다. 전자는 음극층으로부터 전자 수송층을 통하여 발광층으로 주입된다. 발광층으로 공급된 정공과 전자는 발광층에서 재결합하여 엑시톤(exiton)을 형성한다. 엑시톤은 소멸하면서 에너지를 방출한다. 엑시톤으로부터 방출된 에너지는 발광층 내의 발광물질을 여기시킨다. 여기된 발광물질이 기저상태로 변하면서 빛을 발생시킨다. Organic light emitting diodes typically include a cathode layer, an electron transport layer, a light emitting layer, a hole transport layer and an anode layer, for example. In organic light emitting diodes, typically, the electron transporting layer, the light emitting layer, and the hole transporting layer are based on an organic compound. When a voltage is applied between the cathode layer and the anode layer, holes are injected from the anode layer through the hole transport layer into the light emitting layer. Electrons are injected from the cathode layer through the electron transport layer into the light emitting layer. Holes and electrons supplied to the light emitting layer recombine in the light emitting layer to form excitons. Excitons dissipate and release energy. The energy emitted from the exciton excites the light emitting material in the light emitting layer. The excited luminescent material changes to the ground state to generate light.
유기발광다이오드의 발광층의 발광 물질은 일중항 엑시톤에 의하여 여기되는 형광 물질, 또는, 삼중항 엑시톤에 의하여 여기되는 인광 물질일 수 있다. 발광층 내에서 일중항 엑시톤 대 삼중항 엑시톤의 통계적 생성비율은 1:3인 것으로 알려져 있다. 발광층에 존재하는 발광 물질이 형광 물질인 경우, 삼중항 엑시톤은 빛의 발생에 기여하지 못하고 낭비된다. 발광층에 존재하는 발광 물질이 인광 물질인 경우, 일중항 엑시톤 및 삼중항 엑시톤 모두가 빛의 발생에 기여할 수 있으며, 그에 따라, 발광층의 내부 양자 효율은 100 %에 도달할 수 있다. The light emitting material of the light emitting layer of the organic light emitting diode may be a fluorescent material excited by singlet excitons, or a phosphorescent material excited by triplet excitons. It is known that the ratio of the singlet excitons to triplet excitons in the light emitting layer is 1: 3. When the light emitting material present in the light emitting layer is a fluorescent material, triplet excitons do not contribute to the generation of light and are wasted. When the light emitting material present in the light emitting layer is a phosphor, both singlet excitons and triplet excitons may contribute to the generation of light, and thus the internal quantum efficiency of the light emitting layer may reach 100%.
발광층은 도핑되지 않은 호스트를 포함할 수 있다. 또는, 발광층은 호스트 및 도펀트를 포함할 수 있다. 호스트는 발광층의 물리적 형태를 형성하는 매트릭스의 역할을 한다. 도펀트는 상기 매트릭스 중에 분산되어 있다. 발광층이 도핑되지 않은 호스트를 포함하는 경우, 호스트 자체가 발광 물질일 수 있다. 발광층이 호스트 및 도펀트를 포함하는 경우, 도펀트는 발광 물질이고, 호스트는 발광물질이거나 아닐 수 있다. The light emitting layer can include an undoped host. Alternatively, the light emitting layer may include a host and a dopant. The host acts as a matrix to form the physical form of the light emitting layer. Dopants are dispersed in the matrix. When the light emitting layer includes a undoped host, the host itself may be a light emitting material. When the light emitting layer includes a host and a dopant, the dopant may be a light emitting material, and the host may or may not be a light emitting material.
발광층이 도핑되지 않은 호스트를 포함하는 경우, 호스트는 엑시머를 형성할 수 있고, 그에 따라, 색순도의 감소 및 효율의 저하가 발생할 수 있다. 호스트 및 도펀트를 포함하는 발광층은, 도핑되지 않은 호스트를 포함하는 발광층에 비하여, 향상된 색순도를 가지며, 또한, 에너지 전이를 통한 효율의 증가를 얻을 수 있다.When the light emitting layer includes an undoped host, the host may form an excimer, whereby a decrease in color purity and a decrease in efficiency may occur. The light emitting layer including the host and the dopant has an improved color purity and an increase in efficiency through energy transfer, compared to the light emitting layer including the undoped host.
인광 물질을 채용하고 호스트/도펀트 방식을 채용하는 발광층을 사용함으로써, 유기발광다이오드의 발광 효율이 증가되어 왔다. 예를 들어, 실제로 제작된 유기발광다이오드의 일부는 외부양자효율이 29%에 도달하였다. 특히, 적색 유기발광다이오드의 외부양자효율은 26%에 도달하였다. 그러나, 여전히, 유기발광다이오드의 발광 효율은 만족스럽지 못한 수준이다. By employing a light emitting layer employing a phosphorescent material and employing a host / dopant method, the luminous efficiency of the organic light emitting diode has been increased. For example, some of the fabricated organic light emitting diodes have an external quantum efficiency of 29%. In particular, the external quantum efficiency of the red organic light emitting diode reached 26%. However, the luminous efficiency of the organic light emitting diode is still unsatisfactory.
유기발광다이오드의 외부 양자 효율은 "외광 효율 × 내부 양자 효율 × 전하 균형"으로 결정된다. 따라서, 발광층의 외광 효율을 증가시킴으로써, 유기발광다이오드의 외부 양자 효율을 개선할 수 있다.The external quantum efficiency of the organic light emitting diode is determined by "external light efficiency x internal quantum efficiency x charge balance". Therefore, by increasing the external light efficiency of the light emitting layer, it is possible to improve the external quantum efficiency of the organic light emitting diode.
호스트/도펀트 방식을 채용하는 발광층에 있어서, 이론적 계산에 의하면, 호스트 매트릭스 내에서 도펀트가 배향되어 있지 않으면, 상기 발광층의 외광 효율은 30 %를 초과할 수 없는 것으로 알려져 있다. 이와 반대로, 알려진 바에 의하면, 호스트 매트릭스 내에서 도펀트가 수평으로 배향될 수 있다면, 상기 발광층의 외광 효율이 어느 정도 증가할 수 있는 것으로 알려져 있다. 그러나, 수평 배향된 도펀트를 포함하는 호스트/도펀트 방식의 발광층이 구현된 사례가 없다. 나아가, 30 % 이상의 외부 양자 효율을 갖는 유기발광다이오드 소자가 구현된 사례도 아직 없다.In the light emitting layer employing the host / dopant method, theoretical calculations show that the external light efficiency of the light emitting layer cannot exceed 30% unless the dopant is oriented in the host matrix. On the contrary, it is known that the external light efficiency of the light emitting layer can be increased to some extent if the dopant can be horizontally oriented in the host matrix. However, there is no case where a light emitting layer of a host / dopant method including a horizontally oriented dopant is implemented. Furthermore, there is no example of an organic light emitting diode device having an external quantum efficiency of 30% or more.
본 발명에서는, 향상된 수평 배향성을 갖는 도펀트를 함유하는 호스트/도펀트 방식의 발광층을 포함하는 유기발광다이오드를 제공한다.The present invention provides an organic light emitting diode comprising a light emitting layer of the host / dopant type containing a dopant having improved horizontal alignment.
본 발명의 일 측면에 따른 유기발광다이오드의 일 구현예는,One embodiment of the organic light emitting diode according to an aspect of the present invention,
양극층; An anode layer;
상기 양극층 위에 위치하는 발광층으로서, 엑시플렉스를 형성하는 정공수송물질 및 전자수송물질을 포함하는 호스트 및 Ir(mphmq)2tmd계 인광 물질을 포함하는 도펀트를 포함하는 발광층; 및 A light emitting layer on the anode layer, the light emitting layer including a dopant comprising a host including a hole transport material and an electron transport material and an Ir (mphmq) 2 tmd phosphorescent material forming an exciplex; And
상기 발광층 위에 위치하는 음극층;을 포함한다.It includes; the cathode layer located on the light emitting layer.
본 발명에서 밝혀진 바에 따르면, 발광층에 있어서, 호스트로서 엑시플렉스를 형성하는 정공수송물질 및 전자수송물질을 조합하여 사용하고, 도펀트로서 Ir(mphmq)2tmd계 인광 물질을 사용하면, 상기 호스트 내에서의 상기 도펀트의 수평 배향율이 급격히 증가한다. According to the present invention, in the light emitting layer, when a hole transport material and an electron transport material forming an exciplex are used in combination as a host, and an Ir (mphmq) 2 tmd phosphorescent material is used as a dopant, The horizontal orientation of the dopant increases rapidly.
특정 메카니즘으로 한정되는 것은 아니지만, 이는, 엑시플렉스를 형성하는 정공수송물질 및 전자수송물질을 포함하는 호스트와 Ir(mphmq)2tmd계 인광 물질 사이의 상호작용에 기인하는 것으로 추정된다. 예를 들면, 엑시플렉스를 형성하는 NPB계 정공수송물질 및 B3PYMPM계 전자수송물질을 포함하는 호스트의 굴절률은 광학적으로 비등방성을 보이고, Ir(mphmq)2tmd계 인광 물질은 화학구조 상의 비대칭성을 보인다. 상기 호스트 재료의 굴절률이 광학적 비등방성을 갖는다는 것은 상기 호스트 재료가 특정 방향으로의 배향을 갖는다는 것을 의미한다. 따라서, 상기 호스트 재료의 배향이 상기 도펀트 재료의 수평 배향을 유도하는 것으로 추정된다. 또한, Ir(mphmq)2tmd계 인광 물질 도펀트의 화학구조 상의 비대칭에 의하여, Ir(mphmq)2tmd계 인광 물질 도펀트의 수평 배향이 촉진되는 것으로 추정된다.Although not limited to a specific mechanism, it is presumed to be due to the interaction between the Ir (mphmq) 2 tmd based phosphor and a host including the hole transport material and the electron transport material forming the exciplex. For example, the refractive index of the host including the NPB-based hole transport material and the B3PYMPM-based electron transport material forming the exciplex is optically anisotropic, and the Ir (mphmq) 2tmd-based phosphor exhibits an asymmetric chemical structure. . The refractive index of the host material having optical anisotropy means that the host material has an orientation in a particular direction. Thus, it is assumed that the orientation of the host material leads to the horizontal orientation of the dopant material. In addition, it is estimated that the horizontal orientation of the Ir (mphmq) 2tmd-based phosphor dopant is promoted by the asymmetry in the chemical structure of the Ir (mphmq) 2tmd-based phosphor dopant.
본 발명의 발광층에서의 도펀트의 수평 배향율이 매우 높기 때문에, 본 발명의 발광층은 매우 향상된 외광 효율을 발휘할 수 있다. 그에 따라, 본 발명의 발광층을 포함하는 유기발광다이오드는 매우 향상된 외부 양자 효율을 가질 수 있다.Since the horizontal alignment rate of the dopant in the light emitting layer of the present invention is very high, the light emitting layer of the present invention can exhibit much improved external light efficiency. Accordingly, the organic light emitting diode including the light emitting layer of the present invention can have a very improved external quantum efficiency.
도 1은, 실시예 1의 유기발광다이오드의 발광 스펙트럼이다.1 is an emission spectrum of the organic light emitting diode of Example 1. FIG.
도 2는 실시예 1의 유기발광다이오드의 발광층에서의 Ir(mphmq)2tmd 인광 물질의 수평 배향율 측정결과이다.FIG. 2 is a measurement result of the horizontal alignment ratio of Ir (mphmq) 2 tmd phosphor in the light emitting layer of the organic light emitting diode of Example 1. FIG.
도 3은 비교예 1의 유기발광다이오드의 발광층에서의 Ir(ppy)2acac 인광 물질의 수평 배향율을 측정결과이다.3 is a measurement result of the horizontal orientation of the Ir (ppy) 2 acac phosphor in the light emitting layer of the organic light emitting diode of Comparative Example 1.
도 4는, 실시예 1의 유기발광다이오드에 대한 전압-전류밀도-발광휘도의 관계이다.4 is a relationship between voltage, current density, and light emission luminance of the organic light emitting diode of Example 1. FIG.
도 5는 실시예 1의 유기발광다이오드에 대한 휘도 대비 외부양자효율의 관계이다. FIG. 5 is a relation between luminance and external quantum efficiency of the organic light emitting diode of Example 1. FIG.
도 6은, 실시예 1의 유기발광다이오드에 대한 휘도 대비 전력효율의 관계이다.FIG. 6 is a relation of power efficiency versus luminance for the organic light emitting diode of Example 1. FIG.
도 7은 비교예 1의 유기발광다이오드에 대한 전압-전류밀도-발광휘도의 관계이다. 7 is a relationship between voltage, current density, and light emission luminance of the organic light emitting diode of Comparative Example 1. FIG.
도 8은, 비교예 1의 유기발광다이오드에 대한 외부양자효율 및 전력효율이다.8 is an external quantum efficiency and power efficiency of the organic light emitting diode of Comparative Example 1.
이하에서는, 본 발명의 일 측면에 따른 유기발광다이오드를 더욱 상세하게 설명한다. 본 발명의 일 측면에 따른 유기발광다이오드의 일 구현예는,Hereinafter, an organic light emitting diode according to an aspect of the present invention will be described in more detail. One embodiment of the organic light emitting diode according to an aspect of the present invention,
양극층; An anode layer;
상기 양극층 위에 위치하는 발광층으로서, 엑시플렉스를 형성하는 정공수송물질 및 전자수송물질을 포함하는 호스트 및 Ir(mphmq)2tmd계 인광 물질을 포함하는 도펀트를 포함하는 발광층; 및 A light emitting layer on the anode layer, the light emitting layer including a dopant comprising a host including a hole transport material and an electron transport material and an Ir (mphmq) 2 tmd phosphorescent material forming an exciplex; And
상기 발광층 위에 위치하는 음극층;을 포함한다.It includes; the cathode layer located on the light emitting layer.
엑시플렉스라 함은 들뜬상태 전하이동 복합체를 의미한다. 본 발명에 있어서, 발광층의 호스트는 정공수송물질과 전자수송물질을 포함하며, 정공수송물질과 전자수송물질은 엑시플렉스를 형성하는 물질의 쌍을 이룬다. 엑시플렉스를 형성하는 정공수송물질:전자수송물질 쌍은, 비제한적인 예를 들면, NPB:B3PYMPM, TCTA:B3PYMPM, TCTA:TPBi, TCTA:3TPYMB, TCTA:BmPyPB, TCTA:BSFM, CBP:B3PYMPM, 또는 NPB:BSFM일 수 있다. Exiplex refers to an excited state charge transfer complex. In the present invention, the host of the light emitting layer includes a hole transport material and an electron transport material, the hole transport material and the electron transport material is a pair of materials forming an exciplex. Hole transport material: electron transport material pairs that form exciplexes include, but are not limited to, NPB: B3PYMPM, TCTA: B3PYMPM, TCTA: TPBi, TCTA: 3TPYMB, TCTA: BmPyPB, TCTA: BSFM, CBP: B3PYMPM, Or NPB: BSFM.
<정공수송물질><Hole transporting material>
Figure PCTKR2014000498-appb-I000001
Figure PCTKR2014000498-appb-I000001
Figure PCTKR2014000498-appb-I000002
Figure PCTKR2014000498-appb-I000002
Figure PCTKR2014000498-appb-I000003
Figure PCTKR2014000498-appb-I000003
<전자수송물질><Electronic Transport Material>
Figure PCTKR2014000498-appb-I000004
Figure PCTKR2014000498-appb-I000004
Figure PCTKR2014000498-appb-I000005
Figure PCTKR2014000498-appb-I000005
Figure PCTKR2014000498-appb-I000006
Figure PCTKR2014000498-appb-I000006
Figure PCTKR2014000498-appb-I000007
Figure PCTKR2014000498-appb-I000007
Figure PCTKR2014000498-appb-I000008
Figure PCTKR2014000498-appb-I000008
Ir(mphmq)2tmd계 인광 물질은 Ir(mphmq)2tmd(여기서, mphmq = 2-(3,5-dimethylphenyl)-4-methylquinoline, tmd = 2,2,6,6-tetramethylheptane-3,5-dionate) 및 그 유도체를 의미한다. Ir (mphmq) 2 tmd-based phosphor is Ir (mphmq) 2 tmd (where mphmq = 2- (3,5-dimethylphenyl) -4-methylquinoline, tmd = 2,2,6,6-tetramethylheptane-3,5 -dionate) and derivatives thereof.
<Ir(mphmq)2tmd><Ir (mphmq) 2 tmd>
Figure PCTKR2014000498-appb-I000009
Figure PCTKR2014000498-appb-I000009
발광 층에 있어서 정공수송물질의 함량 대비 전자수송물질의 함량이 너무 작으면 상대적으로 정공 수송이 우세한 반면, 정공 수송물질의 함량 대비 전자수송물질의 함량이 너무 크면 전자 수송특성이 우세하다. In the light emitting layer, when the content of the electron transport material is too small compared to the content of the hole transport material, the hole transport is relatively superior, whereas when the content of the electron transport material is too large relative to the content of the hole transport material, the electron transport property is superior.
발광층에 있어서, Ir(mphmq)2tmd계 인광 물질의 함량이 너무 작으면 효율이 감소할 수 있다. 발광층에 있어서, Ir(mphmq)2tmd계 인광 물질의 함량이 너무 크면 도펀트 엑시톤(exciton) 끼리 자체 소멸이 일어나 효율이 감소할 수 있다.In the light emitting layer, if the content of Ir (mphmq) 2 tmd-based phosphor is too small, the efficiency can be reduced. In the light emitting layer, if the content of the Ir (mphmq) 2 tmd-based phosphor is too large, dopant excitons may self extinguish themselves, thereby reducing efficiency.
예를 들어, 발광층에 있어서, 전자수송물질의 함량은, 정공수송물질의 100 몰부를 기준으로 하여, 약 50 몰부 내지 약 150 몰부일 수 있다. For example, in the light emitting layer, the content of the electron transporting material may be about 50 mol parts to about 150 mol parts based on 100 mol parts of the hole transport material.
예를 들어, 발광층에 있어서, Ir(mphmq)2tmd계 인광 물질의 함량은, 정공수송물질, 전자수송물질 및 Ir(mphmq)2tmd계 인광 물질의 총 중량 100 wt%를 기준으로 하여, 약 1 wt% 내지 약 20 wt%일 수 있다.For example, in a light emitting layer, by the Ir (mphmq) 2 content of tmd-based phosphors, based on the total weight of 100 wt% of the hole transport material, electron transport material and Ir (mphmq) 2 tmd-based phosphor, about 1 wt% to about 20 wt%.
발광층에서의 도펀트의 수평 배향 전이쌍극자 비율은 발광층 안에 있는 전체 도펀트 분자중에서 발광층의 주된 면과 전이쌍극자 방향과 평행하게 위치하는 도펀트 분자의 비율을 의미한다. The ratio of the horizontally aligned transition dipoles of the dopant in the light emitting layer refers to the ratio of dopant molecules located in parallel with the main plane of the light emitting layer and the direction of the transition dipole among all the dopant molecules in the light emitting layer.
발광층에서의 도펀트의 전이쌍극자모멘트가 높은 수평 배향율을 가질 수록, 발광층의 외광 효율이 증가한다. 수직 배향 전이쌍극자 모멘트를 갖는 도펀트는 주로 발광층 면과 수직한 방향으로 전기장을 방출하는데, 이렇게 방출된 빛은 발광층 및 투명 전극층내로 전파되는 도파 모드(waveguide mode)나 금속전극과의 SPP(surface plasmon polaritons)에 의하여 주로 손실된다. 이와 달리, 수평 배향 전이쌍극자 모멘트를 갖는 도펀트는 발광층의 주된 면에 수평한 방향으로 전기장을 방출하며, 이렇게 방출된 빛은 소자 외부로 진행하는 비율이 크다. 따라서 수직배향 전이쌍극자 대비 수평배향 전이쌍극자 비율이 높을수록 외광 효율이 증가하여 외부양자효율이 증가한다.As the transition dipole moment of the dopant in the light emitting layer has a high horizontal orientation rate, the external light efficiency of the light emitting layer increases. Dopants with a vertically oriented dipole moment emit an electric field mainly in a direction perpendicular to the plane of the light emitting layer, whereby the emitted light is either a waveguide mode propagating into the light emitting layer and the transparent electrode layer or a surface plasmon polaritons with a metal electrode. Are mainly lost. In contrast, a dopant having a horizontally oriented dipole moment emits an electric field in a direction horizontal to the main plane of the light emitting layer, and the emitted light has a high rate of propagation outside the device. Therefore, as the ratio of the horizontally oriented transition dipole to the vertically oriented transition dipole is higher, the external light efficiency increases and the external quantum efficiency increases.
본 발명에 있어서, 발광층 내의 Ir(mphmq)2tmd계 도펀트의 수평 배향율은 매우 높다. 호스트 내에서, 도펀트가 무작위적으로 배향된 경우에는, 도펀트의 수평 배향율은 약 67 %이다. 이론 계산에 의하면, 도펀트의 수평 배향율이 약 67 %인 경우에는 발광층의 외광 효율은 약 25.7 %에 불과하다. 이에 비하여, 본 발명의 발광층에 있어서는, Ir(mphmq)2tmd계 도펀트의 수평 배향율은, 예를 들면, 약 83 % 내지 약 89 %일 수 있다. 이론 계산에 의하면, 도펀트의 수평 배향율이 약 89 %인 경우, 발광층의 외광 효율은 약 35.8 % 를 가질 수 있다. In the present invention, the horizontal orientation of the Ir (mphmq) 2 tmd-based dopant in the light emitting layer is very high. In the host, when the dopant is randomly oriented, the horizontal orientation of the dopant is about 67%. According to the theoretical calculation, when the horizontal orientation of the dopant is about 67%, the external light efficiency of the light emitting layer is only about 25.7%. In contrast, in the light emitting layer of the present invention, the horizontal orientation of the Ir (mphmq) 2 tmd-based dopant may be, for example, about 83% to about 89%. According to the theoretical calculation, when the horizontal orientation of the dopant is about 89%, the external light efficiency of the light emitting layer may have about 35.8%.
본 발명의 유기발광다이오드에 있어서, 양극층 및 음극층 각각은, 불투명 전극, 투명 전극 또는 반사 전극일 수 있다. 본 발명의 유기발광다이오드의 작동시, 양극층에는 양의 전압이 인가되고, 음극층에는 음의 전압이 인가된다. 불투명 전극은, 예를 들면, 리튬, 나트륨, 칼륨, 루비듐, 세슘 등의 알칼리 금속, 베릴륨, 마그네슘, 칼슘, 스트론튬, 바륨 등의 알칼리 토금속; 알루미늄, 스칸듐, 바나듐, 아연, 이트륨, 인듐, 세륨, 사마륨, 유로퓸, 테르븀, 이테르븀 등의 금속; 이들 중 2개 이상의 합금; 또는 이들 중 1개 이상과 금, 은, 백금, 구리, 망간, 티탄, 코발트, 니켈, 텅스텐, 주석 중 1개 이상과의 합금; 및 이들 중 적어도 2종을 포함하는 구조체일 수 있다. 투명 전극은, 예를 들면, ITO, IZO, ZnO 또는 그래핀일 수 있다. 반사 전극은, 예를 들면, Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr 또는 이들의 화합물 등으로 반사막을 형성한 후, 그 위에 ITO, IZO, ZnO 또는 그래핀 등으로 막을 형성함으로써 형성될 수 있다. In the organic light emitting diode of the present invention, each of the anode layer and the cathode layer may be an opaque electrode, a transparent electrode, or a reflective electrode. In the operation of the organic light emitting diode of the present invention, a positive voltage is applied to the anode layer and a negative voltage is applied to the cathode layer. The opaque electrode may be, for example, alkali metals such as lithium, sodium, potassium, rubidium, cesium, alkaline earth metals such as beryllium, magnesium, calcium, strontium, barium; Metals such as aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium and ytterbium; Two or more of these alloys; Or an alloy of at least one of these with at least one of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin; And it may be a structure comprising at least two of these. The transparent electrode may be, for example, ITO, IZO, ZnO or graphene. The reflective electrode may be formed of, for example, Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a compound thereof, and thereafter, ITO, IZO, ZnO, or graphene may be formed thereon. Can be formed by forming a film.
본 발명의 유기발광다이오드의 다른 구현예에 있어서, 양극층과 발광층의 사이에, 정공 수송층 및 정공 주입층 중의 적어도 하나를 더 포함할 수 있다. 정공 수송층은, 바람직하게는, 발광층에 사용된 정공수송물질을 포함할 수 있다. 정공 주입층은, 예를 들면, 구리프탈로시아닌 등과 같은 프탈로시아닌 화합물, m-MTDATA(4,4′,4″-Tris(3-methylphenylphenylamino)triphenylamine), TDATA(4,4′,4″-tris(N,N-diphenyl-amino)triphenylamine ), TAPC(1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane), 2-TNATA(4,4 ,4 -tris(N-(2-naphthyl)-N-phenyl-amino)triphenylamine), Pani/DBSA (폴리아닐린/도데실벤젠술폰산), PEDOT/PSS(폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)), Pani/CSA (폴리아닐린/캠퍼술폰산), Pani/PSS (폴리아닐린/폴리(4-스티렌술포네이트)), 또는 이들의 혼합물을 포함할 수 있다. 정공 수송층 및 정공 주입층이 모두 사용되는 경우, 양극층과 정공 수송층의 사이에 정공 주입층이 위치할 수 있다.In another embodiment of the organic light emitting diode of the present invention, it may further include at least one of a hole transport layer and a hole injection layer between the anode layer and the light emitting layer. The hole transport layer may preferably include a hole transport material used in the light emitting layer. The hole injection layer may be, for example, a phthalocyanine compound such as copper phthalocyanine, m-MTDATA (4,4 ′, 4 ″ -Tris (3-methylphenylphenylamino) triphenylamine), TDATA (4,4 ′, 4 ″ -tris (N , N-diphenyl-amino) triphenylamine), TAPC (1,1-bis- (4-bis (4-methyl-phenyl) -amino-phenyl) -cyclohexane), 2-TNATA (4,4, 4-tris ( N- (2-naphthyl) -N-phenyl-amino) triphenylamine), Pani / DBSA (polyaniline / dodecylbenzenesulfonic acid), PEDOT / PSS (poly (3,4-ethylenedioxythiophene) / poly (4-styrene Sulfonates)), Pani / CSA (polyaniline / camphorsulfonic acid), Pani / PSS (polyaniline / poly (4-styrenesulfonate)), or mixtures thereof. When both the hole transport layer and the hole injection layer are used, the hole injection layer may be located between the anode layer and the hole transport layer.
본 발명의 유기발광다이오드의 또 다른 구현예에 있어서, 음극층과 발광층의 사이에, 전자 수송층 및 전자 주입층 중의 적어도 하나를 더 포함할 수 있다. 전자 수송층은, 바람직하게는, 발광층에 사용된 전자수송물질을 포함할 수 있다. 전자 주입층은, 예를 들면, LiF, NaCl, CsF, Li2O, BaO, 또는 이들의 혼합물을 포함할 수 있다. 전자 수송층 및 전자 주입층이 모두 사용되는 경우, 음극층과 전자 수송층의 사이에 전자 주입층이 위치할 수 있다. In another embodiment of the organic light emitting diode of the present invention, at least one of an electron transport layer and an electron injection layer may be further included between the cathode layer and the light emitting layer. The electron transporting layer may preferably include an electron transporting material used for the light emitting layer. The electron injection layer may include, for example, LiF, NaCl, CsF, Li 2 O, BaO, or a mixture thereof. When both the electron transport layer and the electron injection layer are used, the electron injection layer may be located between the cathode layer and the electron transport layer.
본 발명의 유기발광다이오드의 또 다른 구현예에 있어서, 전자수송층은 n 도펀트를 더 포함할 수 있다. n 도펀트는, 예를 들면, Rb2CO3, Cs2CO3, LiF, 또는 이들의 혼합물일 수 있다. 전자 수송층에 n 도펀트를 더 포함함으로써, 전자 수송층과 정공 수송층 간의 전하균형을 유도할 수 있다. 전자 수송층과 정공 수송층 간의 전하균형은 유기발광다이오드의 외부양자효율을 더욱 향상시킬 수 있다.In another embodiment of the organic light emitting diode of the present invention, the electron transport layer may further include n dopant. The n dopant may be, for example, Rb 2 CO 3 , Cs 2 CO 3 , LiF, or a mixture thereof. By further including n dopant in the electron transport layer, it is possible to induce charge balance between the electron transport layer and the hole transport layer. The charge balance between the electron transport layer and the hole transport layer may further improve the external quantum efficiency of the organic light emitting diode.
이하에서는, 본 발명의 유기발광다이오드를 제조하는 방법의 예를 상세히 설명한다(양극층이 바닥에 위치하는 구현예를 설명한다). Hereinafter, an example of a method of manufacturing the organic light emitting diode of the present invention will be described in detail (an embodiment in which the anode layer is located at the bottom).
먼저, 양극층을 기판 위에 형성한다. 기판으로서는, 통상적인 유기 발광 소자에 사용되는 기판을 사용할 수 있으며, 기계적 강도, 열적 안정성, 투명성, 표면 평활성, 취급용이성 및 방수성이 우수한 유리 기판 또는 투명 플라스틱 기판을 사용할 수 있다. 예를 들면 SiO2를 주성분으로 하는 투명한 유리 재질로 기판을 형성할 수 있다. 양극층은 공지된 다양한 방법, 예를 들면, 증착법, 스퍼터링법 또는 스핀코팅법 등을 이용하여 형성될 수 있다. 양극층 위에 정공 주입층을 형성한다. 정공 주입층은 양극층 위에 진공증착법, 스핀코팅법, 캐스트법 또는 LB(Langmuir-Blodgett)법 등과 같은 다양한 방법을 이용하여 형성될 수 있다. 정공 주입층 위에 정공 수송층을 형성한다. 정공 수송층의 형성은 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 이용할 수 있다. 정공 수송층 위에 발광층을 형성한다. 발광층은 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 사용하여 형성될 수 있다. 발광층 위에 전자 수송층을 형성한다. 전자 수송층의 형성은 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 이용할 수 있다. 전자 수송층 위에 전자 주입층을 형성한다. 전자 주입층의 형성은 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 이용할 수 있다. 전자 주입층 위에 음극층을 형성한다. 음극층은 공지된 다양한 방법, 예를 들면, 증착법, 스퍼터링법 또는 스핀코팅법 등을 이용하여 형성될 수 있다.First, an anode layer is formed on a substrate. As a board | substrate, the board | substrate used for a conventional organic light emitting element can be used, The glass substrate or transparent plastic substrate which is excellent in mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and waterproofness can be used. For example, the substrate can be formed of a transparent glass material mainly containing SiO 2 . The anode layer may be formed using various known methods, for example, a deposition method, a sputtering method or a spin coating method. A hole injection layer is formed on the anode layer. The hole injection layer may be formed on the anode layer using various methods such as vacuum deposition, spin coating, casting, or Langmuir-Blodgett (LB). A hole transport layer is formed on the hole injection layer. The hole transport layer may be formed using various methods such as vacuum deposition, spin coating, casting or LB. An emission layer is formed on the hole transport layer. The light emitting layer may be formed using various methods such as vacuum deposition, spin coating, cast or LB. An electron transport layer is formed on the light emitting layer. The electron transport layer may be formed using various methods such as vacuum deposition, spin coating, casting or LB. An electron injection layer is formed on the electron transport layer. The electron injection layer may be formed using various methods such as vacuum deposition, spin coating, casting or LB. The cathode layer is formed on the electron injection layer. The cathode layer may be formed using various known methods, for example, a deposition method, a sputtering method or a spin coating method.
본 발명의 다른 측면에 따라, 본 발명의 유기발광다이오드를 포함하는 조명이 제공된다. 상기 조명은 양극층; 상기 양극층 위에 위치하는 발광층으로서, 엑시플렉스를 형성하는 정공수송물질 및 전자수송물질을 포함하는 호스트 및 Ir(mphmq)2tmd계 인광 물질을 포함하는 도펀트를 포함하는 발광층; 및 상기 발광층 위에 위치하는 음극층;을 포함하는 유기발광다이오드를 구비한다.According to another aspect of the invention, there is provided an illumination comprising the organic light emitting diode of the invention. The illumination is an anode layer; A light emitting layer on the anode layer, the light emitting layer including a dopant comprising a host including a hole transport material and an electron transport material and an Ir (mphmq) 2 tmd phosphorescent material forming an exciplex; And an anode layer disposed on the emission layer.
본 발명의 또 다른 측면에 따라, 본 발명의 유기발광다이오드를 포함하는 디스플레이 장치가 제공된다. 상기 디스플레이 장치는 소스, 드레인, 게이트 및 활성층을 포함한 트랜지스터; 및 양극층, 상기 양극층 위에 위치하는 발광층으로서, 엑시플렉스를 형성하는 정공수송물질 및 전자수송물질을 포함하는 호스트 및 Ir(mphmq)2tmd계 인광 물질을 포함하는 도펀트를 포함하는 발광층, 및 상기 발광층 위에 위치하는 음극층을 포함하는 유기발광다이오드;를 구비하며, 상기 유기발광다이오드의 음극층 또는 양극층이 상기 소스 및 드레인 중 하나와 전기적으로 연결될 수 있다. According to another aspect of the present invention, there is provided a display device comprising the organic light emitting diode of the present invention. The display device includes a transistor including a source, a drain, a gate, and an active layer; And a light emitting layer including an anode layer, a light emitting layer on the anode layer, a dopant including a host including an hole transport material and an electron transport material to form an exciplex, and an Ir (mphmq) 2 tmd phosphorescent material. An organic light emitting diode including a cathode layer disposed on the light emitting layer; a cathode layer or an anode layer of the organic light emitting diode may be electrically connected to one of the source and the drain.
<실시예><Example>
실시예 1 --- 유기발광다이오드의 제작 (발광층 : NPB, B3PYMPM 및 Ir(mphmq)2tmd) Example 1 --- Fabrication of organic light emitting diodes (light emitting layer: NPB, B3PYMPM and Ir (mphmq) 2 tmd)
ITO 100nm가 증착된 유리기판 위에, 진공 열증착법으로 5 x 10-7 torr 이하의 진공도에서 1 Å/s의 증착속도로, TAPC를 증착하여 75 nm 두께의 정공 주입층을 형성하였다. On a glass substrate on which ITO 100 nm was deposited, TAPC was deposited at a deposition rate of 1 법 / s at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation to form a hole injection layer having a thickness of 75 nm.
정공 주입층 위에, 진공 열증착법으로 5 x 10-7 torr 이하의 진공도에서 1 Å/s의 증착 속도로 NPB를 증착하여 10 nm 두께의 정공 수송층을 형성하였다. On the hole injection layer, NPB was deposited at a deposition rate of 1 kW / s at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation to form a hole transport layer having a thickness of 10 nm.
정공 수송층 위에, 진공 열증착법으로 5 x 10-7 torr 이하의 진공도에서 NPB, B3PYMPM 및 Ir(mphmq)2tmd를 각각 0.49 Å/s, 0.46 Å/s, 0.05 Å/s의 증착 속도로 동시 증착하여 30 nm 두께의 발광층을 형성하였다. NPB : B3PYMPM의 몰비는 1:1 이었고, NPB, B3PYMPM 및 Ir(mphmq)2tmd의 총 중량 100 wt%를 기준으로 하여, Ir(mphmq)2tmd의 함량은 5 wt%이었다.Simultaneous deposition of NPB, B3PYMPM and Ir (mphmq) 2 tmd at 0.49 Å / s, 0.46 Å / s and 0.05 Å / s, respectively, on the hole transport layer at vacuum degrees below 5 x 10 -7 torr by vacuum thermal evaporation To form a light emitting layer having a thickness of 30 nm. The molar ratio of NPB: B3PYMPM was 1: 1 and the content of Ir (mphmq) 2 tmd was 5 wt% based on 100 wt% of the total weight of NPB, B3PYMPM and Ir (mphmq) 2 tmd.
발광층 위에, 5 x 10-7 torr 이하의 진공도에서 1 Å/s의 증착 속도로, B3PYMPM을 증착하여 10 nm 두께의 전자 수송층을 형성하였다. On the light emitting layer, B3PYMPM was deposited at a deposition rate of 1 kW / s at a vacuum degree of 5 x 10 -7 torr or less to form an electron transport layer having a thickness of 10 nm.
전하균형을 맞추기 위하여, 전자 수송층 위에, 5 x 10-7 torr 이하의 진공도에서, B3PYMPM 및 n 도펀트로서 RB2CO3를 각각 0.98 Å/s, 0.02 Å/s의 증착 속도로 동시 증착하여, 45 nm 두께의 전하균형용 전자 수송층을 형성하였다. 전하균형용 전자 수송층에 있어서, RB2CO3 도핑량은, B3PYMPM 및 RB2CO3의 총 중량 100 wt%를 기준으로 하여, 2 wt%이었다.To balance charge, simultaneous deposition of RB 2 CO 3 as B3PYMPM and n dopant at a deposition rate of 0.98 dl / s and 0.02 dl / s, respectively, on an electron transport layer at a vacuum of 5 x 10 -7 torr or less, 45 An electron transport layer for charge balancing was formed. In the charge balancing electron transport layer, the amount of RB 2 CO 3 doping was 2 wt% based on 100 wt% of the total weight of B 3 PYMPM and RB 2 CO 3 .
전하균형용 전자 수송층 위에, 진공 열증착법으로 5 x 10-7 torr 이하의 진공도에서 4 Å/s의 증착 속도로, Al을 증착하여 100 nm 두께의 상부전극을 형성함으로써 실시예 1의 유기발광다이오드를 제조하였다.On the charge balancing electron transport layer, the organic light emitting diode of Example 1 was formed by depositing Al to form a 100 nm thick upper electrode at a deposition rate of 4 kW / s at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation. Was prepared.
실시예 1의 유기발광다이오드에 대하여, 분광광도계 (Spectrascan PR 650, Photoresearch)를 사용하여 발광 스펙트럼을 얻었다. 도 1은, 실시예 1의 유기발광다이오드의 발광 스펙트럼이다. 도 1에 나타난 바와 같이, 실시예 1의 유기발광다이오드는 612 nm 에서 피크를 보였으며, 적색광 소자로 적합하게 사용될 수 있다.About the organic light emitting diode of Example 1, the emission spectrum was obtained using the spectrophotometer (Spectrascan PR 650, Photoresearch). 1 is an emission spectrum of the organic light emitting diode of Example 1. FIG. As shown in FIG. 1, the organic light emitting diode of Example 1 showed a peak at 612 nm and may be suitably used as a red light emitting device.
비교예 1 --- 유기발광다이오드의 제작 (발광층 : TCTA, B3PYMPM 및 Ir(ppy)2acac) Comparative Example 1 --- Fabrication of organic light emitting diode (Light emitting layer: TCTA, B3PYMPM and Ir (ppy) 2 acac)
ITO 100nm가 증착된 유리기판 위에, 진공 열증착법으로 5 x 10-7 torr 이하의 진공도에서 1 Å/s의 증착 속도로, TAPC를 증착하여 60 nm 두께의 정공 주입층을 형성하였다. On a glass substrate on which ITO 100 nm was deposited, TAPC was deposited at a deposition rate of 1 kW / s at a vacuum degree of 5 x 10 -7 torr or lower by vacuum thermal evaporation to form a hole injection layer having a thickness of 60 nm.
정공 주입층 위에, 진공 열증착법으로 5 x 10-7 torr 이하의 진공도에서 1 Å/s의 증착 속도로, TCTA를 증착하여 10 nm 두께의 정공 수송층을 형성하였다. TCTA was deposited on the hole injection layer by vacuum thermal evaporation at a deposition rate of 1 kW / s at a vacuum degree of 5 x 10 -7 torr or less to form a 10 nm thick hole transport layer.
정공 수송층 위에, 진공 열증착법으로 5 x 10-7 torr 이하의 진공도에서, TCTA, B3PYMPM 및 Ir(ppy)2acac를 각각 0.52 Å/s, 0.4 Å/s, 0.08 Å/s의 증착 속도로 동시 증착하여 30 nm 두께의 발광층을 형성하였다. TCTA : B3PYMPM의 몰비는 1:1 이었고, TCTA, B3PYMPM 및 Ir(ppy)2acac의 총 중량 100 wt%를 기준으로 하여, Ir(ppy)2acac의 함량은 8 wt%이었다.Co-deposition of TCTA, B3PYMPM and Ir (ppy) 2acac at 0.52 Å / s, 0.4 Å / s and 0.08 Å / s, respectively, on the hole transport layer at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation To form a light emitting layer having a thickness of 30 nm. The molar ratio of TCTA: B3PYMPM was 1: 1 and the content of Ir (ppy) 2acac was 8 wt% based on 100 wt% of the total weight of TCTA, B3PYMPM and Ir (ppy) 2acac.
TCTA : 4,4’,4’’-tris(N-carbazolyl)-triphenylamineTCTA: 4,4 ', 4' '-tris (N-carbazolyl) -triphenylamine
Ir(ppy)2acac : bis(2-phenylpyridine)iridium(III) acetylacetonateIr (ppy) 2acac: bis (2-phenylpyridine) iridium (III) acetylacetonate
발광층 위에, 진공 열증착법으로 5 x 10-7 torr 이하의 진공도에서 1 Å/s의 증착 속도로, B3PYMPM을 증착하여 40 nm 두께의 전자 수송층을 형성하였다. On the light emitting layer, B3PYMPM was deposited at a deposition rate of 1 증착 / s at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation to form an electron transport layer having a thickness of 40 nm.
전자 수송층 위에, 진공 열증착법으로 5 x 10-7 torr 이하의 진공도에서 0.01 Å/s의 증착 속도로, LiF를 증착하여 0.7 nm 두께의 전자 주입층을 형성하였다.On the electron transport layer, LiF was deposited at a deposition rate of 0.01 mW / s at a vacuum degree of 5 x 10 -7 torr or lower by vacuum thermal evaporation to form an electron injection layer having a thickness of 0.7 nm.
전자 주입층 위에, 진공 열증착법으로 5 x 10-7 torr 이하의 진공도에서 4 Å/s의 증착 속도로, Al을 증착하여 100 nm 두께의 상부전극을 형성함으로써 비교예 1의 유기발광다이오드를 제조하였다.On the electron injection layer, an organic light emitting diode of Comparative Example 1 was prepared by depositing Al to form an upper electrode having a thickness of 100 nm at a deposition rate of 4 Å / s at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation. It was.
참조예 1 --- 발광층의 형성Reference Example 1 --- Formation of Light Emitting Layer
유리기판 위에, 진공 열증착법으로 5 x 10-7 torr 이하의 진공도에서 NPB, B3PYMPM 및 Ir(mphmq)2tmd를 각각 0.49 Å/s, 0.46 Å/s, 0.05 Å/s의 증착 속도로, NPB, B3PYMPM 및 Ir(mphmq)2tmd를 동시 증착하여 30 nm 두께의 발광층을 형성하였다. NPB : B3PYMPM의 몰비는 1:1 이었고, NPB, B3PYMPM 및 Ir(mphmq)2tmd의 총 중량 100 wt%를 기준으로 하여, Ir(mphmq)2tmd의 함량은 5 wt%이었다. 참조예 1의 발광층은 실시예 1의 유기발광다이오드에 사용된 발광층과 동일하다.On a glass substrate, NPB, B3PYMPM and Ir (mphmq) 2 tmd were respectively deposited at 0.49 Å / s, 0.46 Å / s and 0.05 Å / s at a vacuum degree of 5 x 10 -7 torr by vacuum thermal evaporation. B3PYMPM and Ir (mphmq) 2tmd were simultaneously deposited to form a light emitting layer having a thickness of 30 nm. The molar ratio of NPB: B3PYMPM was 1: 1 and the content of Ir (mphmq) 2tmd was 5 wt% based on 100 wt% of the total weight of NPB, B3PYMPM and Ir (mphmq) 2tmd. The light emitting layer of Reference Example 1 is the same as the light emitting layer used for the organic light emitting diode of Example 1.
비교 참조예 1 --- 발광층의 형성Comparative Reference Example 1 --- Formation of Light Emitting Layer
유리기판 위에, 진공 열증착법으로 5 x 10-7 torr 이하의 진공도에서, TCTA, B3PYMPM 및 Ir(ppy)2acac를 각각 0.52 Å/s, 0.4 Å/s, 0.08 Å/s의 증착 속도로, TCTA, B3PYMPM 및 Ir(ppy)2acac를 동시 증착하여 30 nm 두께의 발광층을 형성하였다. TCTA : B3PYMPM의 몰비는 1:1 이었고, TCTA, B3PYMPM 및 Ir(ppy)2acac의 총 중량 100 wt%를 기준으로 하여, Ir(ppy)2acac의 함량은 8 wt%이었다. 비교 참조예 1의 발광층은 비교예 1의 유기발광다이오드에 사용된 발광층과 동일하다.TCTA, B3PYMPM and Ir (ppy) 2acac were deposited at 0.52 판 / s, 0.4 Å / s and 0.08 Å / s, respectively, on a glass substrate at a vacuum degree of 5 x 10 -7 torr or less by vacuum thermal evaporation. , B3PYMPM and Ir (ppy) 2acac were simultaneously deposited to form a light emitting layer having a thickness of 30 nm. The molar ratio of TCTA: B3PYMPM was 1: 1 and the content of Ir (ppy) 2acac was 8 wt% based on 100 wt% of the total weight of TCTA, B3PYMPM and Ir (ppy) 2acac. The light emitting layer of Comparative Reference Example 1 is the same as the light emitting layer used in the organic light emitting diode of Comparative Example 1.
발광층에서의 인광 물질의 수평 배향율 측정Measurement of the horizontal orientation of the phosphor in the light emitting layer
합성 쿼츠로 만들어진 반원통형 렌즈에 합성 쿼츠 기판위에 증착된 샘플을 고정 시키고, 325 nm 레이저를 조사하여 발광을 시킨다. 발광된 빛은 편광 필름을 통과하여 PMT(Photomultiplier tube)와 단색광기(monochromator)로 측정하고 1도씩 돌려가며 -90 도부터 90 도까지 측정을 한다. 발광체가 수직 배향을 가질 때 나타내는 각도별 p-편광 광발광 세기와 수평 배향을 가질 때 나타내는 각도별 p-편광 광발광 세기를 계산하여 이 둘 값에 각각 가중치를 곱하여 실험치와 일치되는 지점을 구해 수평배향율을 결정할 수 있다. A semi-cylindrical lens made of synthetic quartz is fixed to a sample deposited on a synthetic quartz substrate, and irradiated with a 325 nm laser to emit light. The emitted light passes through a polarizing film and is measured by a photomultiplier tube (PMT) and a monochromator, and rotates by 1 degree and measures from -90 degrees to 90 degrees. Calculate the p-polarized photoluminescence intensity for each angle when the light emitter has a vertical orientation and the p-polarized photoluminescence intensity for each angle that exhibits a horizontal orientation. The orientation rate can be determined.
도 2는 참조예 1의 발광층에서의 Ir(mphmq)2tmd 인광 물질의 수평 배향율 측정결과이다. 도 3은 비교 참조예 1의 발광층에서의 Ir(ppy)2acac 인광 물질의 수평 배향율을 측정결과이다. 도 2에 나타난 바와 같이, 참조예 1의 발광층에서의 Ir(mphmq)2tmd 인광 물질의 수평 배향율은 89%이었다. 반면에, 도 3에 나타난 바와 같이, 비교 참조예 1의 발광층에서의 Ir(ppy)2acac 인광 물질의 수평 배향율은 76%에 불과하였다. 이로부터, NPB, B3PYMPM 및 Ir(mphmq)2tmd의 조합은 매우 우수한 도펀트의 수평 배향율을 유도한다는 예상외의 효과를 발휘함을 알 수 있다. FIG. 2 is a horizontal orientation measurement result of Ir (mphmq) 2 tmd phosphor in the light emitting layer of Reference Example 1. FIG. 3 is a result of measuring the horizontal orientation of the Ir (ppy) 2 acac phosphor in the light emitting layer of Comparative Reference Example 1. FIG. As shown in FIG. 2, the horizontal orientation of the Ir (mphmq) 2 tmd phosphor in the light emitting layer of Reference Example 1 was 89%. On the other hand, as shown in Figure 3, the horizontal orientation of the Ir (ppy) 2 acac phosphor in the light emitting layer of Comparative Reference Example 1 was only 76%. From this, it can be seen that the combination of NPB, B3PYMPM and Ir (mphmq) 2 tmd exerts an unexpected effect of inducing a very good dopant horizontal orientation.
외부 양자 효율의 측정Measurement of External Quantum Efficiency
실시예 1 및 비교예 1의 유기발광다이오드에 대하여, 색도계(Photo research spectrophotometer; PR-650) 및 전원 공급장치(Keithley 2400)를 사용하여 전압-전류밀도-발광휘도의 관계를 측정하였다. For the organic light emitting diodes of Example 1 and Comparative Example 1, the relationship between voltage-current density-luminescence brightness was measured using a color research (Photo research spectrophotometer; PR-650) and a power supply (Keithley 2400).
도 4는, 실시예 1의 유기발광다이오드에 대한 전압-전류밀도-발광휘도의 관계이다. 도 4의 전압-전류밀도-발광휘도 자료를 기초로 하여, 실시예 1의 유기발광다이오드에 대한 외부양자효율 및 전력효율을 계산하였다. 도 5는 실시예 1의 유기발광다이오드에 대한 휘도 대비 외부양자효율의 관계이다. 도 6은, 실시예 1의 유기발광다이오드에 대한 휘도 대비 전력효율의 관계이다.4 is a relationship between voltage, current density, and light emission luminance of the organic light emitting diode of Example 1. FIG. Based on the voltage-current density-luminescence luminance data of FIG. 4, the external quantum efficiency and power efficiency of the organic light emitting diode of Example 1 were calculated. FIG. 5 is a relation between luminance and external quantum efficiency of the organic light emitting diode of Example 1. FIG. FIG. 6 is a relation of power efficiency versus luminance for the organic light emitting diode of Example 1. FIG.
도 7은 비교예 1의 유기발광다이오드에 대한 전압-전류밀도-발광휘도의 관계이다. 도 7의 전압-전류밀도-발광휘도 자료를 기초로 하여, 비교예 1의 유기발광다이오드에 대한 외부양자효율 및 전력효율을 계산하였다. 도 8은, 비교예 1의 유기발광다이오드에 대한 외부양자효율 및 전력효율이다.7 is a relationship between voltage, current density, and light emission luminance of the organic light emitting diode of Comparative Example 1. FIG. Based on the voltage-current density-luminescence luminance data of FIG. 7, the external quantum efficiency and power efficiency of the organic light emitting diode of Comparative Example 1 were calculated. 8 is an external quantum efficiency and power efficiency of the organic light emitting diode of Comparative Example 1.
도 5에 나타난 바와 같이, 실시예 1의 유기발광다이오드는 최대 외부양자효율이 37.28% 이었으며, 휘도 1000 nit에서 36.92%의 외부양자효율을, 휘도 10000 nit에서 31.28%의 외부양자효율을 나타내었다. 이러한 성능은, 고 휘도에서도 30%이상의 외부양자효율을 발휘하는 실시예 1의 유기발광다이오드의 성능은, 현재까지 알려진 바에 의하면, 세계 최고의 성능이다. 현재까지 알려진 바에 의하면, 종래의 녹색 유기발광다이오드 소자는 최대 외부양자효율이 29%이었으며, 종래의 적색 유기발광다이오드 소자는 최대 외부양자효율이 26%에 불과하였다.As shown in FIG. 5, the organic light emitting diode of Example 1 had a maximum external quantum efficiency of 37.28%, an external quantum efficiency of 36.92% at a luminance of 1000 nit, and an external quantum efficiency of 31.28% at a luminance of 10000 nit. Such performance is that the organic light emitting diode of Example 1, which exhibits an external quantum efficiency of 30% or more even at high luminance, is the best known in the world. As known to date, the conventional green organic light emitting diode device has a maximum external quantum efficiency of 29%, and the conventional red organic light emitting diode device has a maximum external quantum efficiency of only 26%.
비교예 1의 유기발광다이오드는, 도 8에 나타난 바와 같이, 최대 외부양자효율이 29.1% 이었으며, 휘도 10000 nit에서 27.8%의 외부양자효율을 나타내었다. 이러한 성능은, 실시예 1의 유기발광다이오드에 비하여, 매우 저조한 성능이다. As shown in FIG. 8, the organic light emitting diode of Comparative Example 1 had a maximum external quantum efficiency of 29.1% and an external quantum efficiency of 27.8% at a luminance of 10000 nit. This performance is very poor compared to the organic light emitting diode of Example 1.
이러한 결과로부터, 발광층을 위한 NPB, B3PYMPM 및 Ir(mphmq)2tmd의 조합은, "발광층에서의 도펀트 수평 배향율을 매우 향상시키며 그에 따라 유기발광다이오드가 매우 향상된 외부양자효율을 갖게 한다"는 예상외의 효과를 발휘함을 알 수 있다. From these results, the combination of NPB, B3PYMPM and Ir (mphmq) 2 tmd for the light emitting layer is unexpected, which "improves the dopant horizontal orientation rate in the light emitting layer and thus the organic light emitting diode has a very improved external quantum efficiency". It can be seen that the effect.
나아가, 발광층을 위한 엑시플렉스를 형성하는 정공수송물질 및 전자수송물질을 포함하는 호스트 및 Ir(mphmq)2tmd계 인광 물질을 포함하는 도펀의 조합은, "발광층에서의 도펀트 수평 배향율을 매우 향상시키며 그에 따라 유기발광다이오드가 매우 향상된 외부양자효율을 갖게 한다"는 예상외의 효과를 발휘함을 알 수 있다.Furthermore, a combination of a hole transport material and an dopant comprising an Ir (mphmq) 2 tmd phosphorescent material that forms an exciplex for the light emitting layer and an "Im (mphmq) 2 tmd-based phosphor material, greatly improves the dopant horizontal orientation in the light emitting layer. And accordingly, the organic light emitting diode has a very improved external quantum efficiency. "
본 발명의 발광층에서의 도펀트의 수평 배향율이 매우 높기 때문에, 본 발명의 발광층은 매우 향상된 외광 효율을 발휘할 수 있다. 그에 따라, 본 발명의 발광층을 포함하는 유기발광다이오드는 매우 향상된 외부 양자 효율을 가질 수 있다.Since the horizontal alignment rate of the dopant in the light emitting layer of the present invention is very high, the light emitting layer of the present invention can exhibit much improved external light efficiency. Accordingly, the organic light emitting diode including the light emitting layer of the present invention can have a very improved external quantum efficiency.

Claims (9)

  1. 양극층; An anode layer;
    상기 양극층 위에 위치하는 발광층으로서, 엑시플렉스를 형성하는 정공수송물질 및 전자수송물질을 포함하는 호스트; 및 Ir(mphmq)2tmd계 인광 물질을 포함하는 도펀트;를 포함하는 발광층; 및 A light emitting layer on the anode layer, the host including a hole transport material and an electron transport material forming an exciplex; And a dopant comprising an Ir (mphmq) 2 tmd phosphorescent material; And
    상기 발광층 위에 위치하는 음극층;을 포함하는,It includes; a cathode layer located on the light emitting layer,
    유기발광다이오드.Organic light emitting diodes.
  2. 제 1 항에 있어서, 상기 호스트는, 엑시플렉스를 형성하는 정공수송물질:전자수송물질 쌍으로서, NPB:B3PYMPM, TCTA:B3PYMPM, TCTA:TPBi, TCTA:3TPYMB, TCTA:BmPyPB, TCTA:BSFM, CBP:B3PYMPM, 또는 NPB:BSFM를 포함하는 것을 특징으로 하는 유기발광다이오드.The method of claim 1, wherein the host is a hole transport material: electron transport material pair for forming an exciplex, NPB: B3PYMPM, TCTA: B3PYMPM, TCTA: TPBi, TCTA: 3TPYMB, TCTA: BmPyPB, TCTA: BSFM, CBP An organic light emitting diode comprising B3PYMPM or NPB: BSFM.
  3. 제 1 항에 있어서, 상기 발광층에 있어서, 상기 전자수송물질의 함량은, 상기 정공수송물질의 100 몰부를 기준으로 하여, 50 몰부 내지 150 몰부인 것을 특징으로 하는 유기발광다이오드.The organic light emitting diode of claim 1, wherein the content of the electron transporting material is 50 to 150 parts by weight based on 100 parts by weight of the hole transporting material.
  4. 제 1 항에 있어서, 상기 발광층에 있어서, 상기 Ir(mphmq)2tmd계 인광 물질의 함량은, 상기 정공수송물질, 상기 전자수송물질 및 상기 Ir(mphmq)2tmd계 인광 물질의 총 중량 100 wt%를 기준으로 하여, 1 wt% 내지 20 wt%인 것을 특징으로 하는 유기발광다이오드.The method of claim 1, wherein in the light-emitting layer, the Ir (mphmq) 2 content of tmd-based phosphors, the hole transport material, a total weight of 100 wt of the electron transport material and the Ir (mphmq) 2 tmd based phosphor An organic light emitting diode, characterized in that from 1 wt% to 20 wt% based on%.
  5. 제 1 항에 있어서, 상기 유기발광다이오드가, 상기 양극층과 상기 발광층의 사이에, 정공 수송층 및 정공 주입층 중의 적어도 하나를 더 포함하는 것을 특징으로 하는 유기발광다이오드.The organic light emitting diode of claim 1, wherein the organic light emitting diode further comprises at least one of a hole transport layer and a hole injection layer between the anode layer and the light emitting layer.
  6. 제 1 항에 있어서, 상기 유기발광다이오드가, 상기 음극층과 상기 발광층의 사이에, 전자 수송층 및 전자 주입층 중의 적어도 하나를 더 포함하는 것을 특징으로 하는 유기발광다이오드.The organic light emitting diode of claim 1, wherein the organic light emitting diode further comprises at least one of an electron transporting layer and an electron injection layer between the cathode layer and the light emitting layer.
  7. 제 6 항에 있어서, 상기 전자 수송층이 n 도펀트를 더 포함하는 것을 특징으로 하는 유기발광다이오드.The organic light emitting diode of claim 6, wherein the electron transport layer further comprises n dopant.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 따른 유기발광다이오드를 포함하는 조명.An illumination comprising the organic light emitting diode according to any one of claims 1 to 7.
  9. 제 1 항 내지 제 7 항 중 어느 한 항에 따른 유기발광다이오드를 포함하는 디스플레이 장치.A display device comprising the organic light emitting diode according to any one of claims 1 to 7.
PCT/KR2014/000498 2013-01-16 2014-01-16 Organic light-emitting diode WO2014112821A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130005110A KR101617877B1 (en) 2013-01-16 2013-01-16 Organic light emitting diode
KR10-2013-0005110 2013-01-16

Publications (1)

Publication Number Publication Date
WO2014112821A1 true WO2014112821A1 (en) 2014-07-24

Family

ID=51209852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000498 WO2014112821A1 (en) 2013-01-16 2014-01-16 Organic light-emitting diode

Country Status (2)

Country Link
KR (1) KR101617877B1 (en)
WO (1) WO2014112821A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418573B2 (en) 2015-02-17 2019-09-17 Seoul National University R&Db Foundation Organic light-emitting device comprising host, phosphorescent dopant and fluorescent dopant
CN111354857A (en) * 2018-12-20 2020-06-30 乐金显示有限公司 Lighting device using organic light emitting diode
CN114447238A (en) * 2020-10-30 2022-05-06 财团法人纺织产业综合研究所 Electroluminescent wire

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646732B1 (en) * 2014-08-08 2016-08-08 서울대학교산학협력단 Organic light-emitting device
CN106328816B (en) * 2015-06-16 2018-11-13 昆山国显光电有限公司 A kind of organic electroluminescence device and preparation method thereof
US10240085B2 (en) 2015-08-27 2019-03-26 Samsung Electronics Co., Ltd. Thin film and organic light-emitting device including the same
KR102601598B1 (en) 2015-09-14 2023-11-14 삼성전자주식회사 Mixture, thin film and organic light emitting device including the same
US10297764B2 (en) 2015-09-14 2019-05-21 Samsung Electronics Co., Ltd. Mixture, thin film, and organic light emitting device including mixture and thin film
KR102353663B1 (en) * 2016-05-20 2022-01-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device, electronic device, and lighting device
KR102505881B1 (en) 2019-10-04 2023-03-06 삼성디스플레이 주식회사 Organic light-emitting device and apparatus including the same
KR102544979B1 (en) 2019-10-04 2023-06-20 삼성디스플레이 주식회사 Organic light-emitting device and apparatus including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124114A (en) * 2007-10-22 2009-06-04 Chisso Corp Material for electron transport-injection layer using silole derivative compound, and organic electroluminescent element
KR20120105629A (en) * 2011-03-16 2012-09-26 호서대학교 산학협력단 Single emissive layer white organic light-emitting diodes using endothermic energy transfer of co-dopants
US20120305895A1 (en) * 2007-07-05 2012-12-06 Hyun Sik Chae Light emitting devices and compositions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100407448C (en) 1999-05-13 2008-07-30 普林斯顿大学理事会 Very high efficiency organic light emitting devices based on electrophosphorescence
JP2009032987A (en) 2007-07-27 2009-02-12 Fujifilm Corp Organic electroluminescent element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120305895A1 (en) * 2007-07-05 2012-12-06 Hyun Sik Chae Light emitting devices and compositions
JP2009124114A (en) * 2007-10-22 2009-06-04 Chisso Corp Material for electron transport-injection layer using silole derivative compound, and organic electroluminescent element
KR20120105629A (en) * 2011-03-16 2012-09-26 호서대학교 산학협력단 Single emissive layer white organic light-emitting diodes using endothermic energy transfer of co-dopants

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DO HAN KIM ET AL.: "Highly Efficient Red Phosphorescent Dopants in Organic Light-Emitting Devices", ADVANCED MATERIALS, vol. 23, 2011, pages 2721 - 2726, Retrieved from the Internet <URL:http://onlinelibrary.wiley.com/doi/10.1002/adma.201100405/pdf> *
YOUNG-SEO PARK ET AL.: "Energy transfer from exciplexes to dopants and its effect on efficiency of organic light emitting diodes", JOURNAL OF APPLIED PHYSICS, vol. 110, no. 12, 2011, pages 1 - 6, Retrieved from the Internet <URL:http://dx.doi.org/10.1063/1.3672836> *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418573B2 (en) 2015-02-17 2019-09-17 Seoul National University R&Db Foundation Organic light-emitting device comprising host, phosphorescent dopant and fluorescent dopant
CN111354857A (en) * 2018-12-20 2020-06-30 乐金显示有限公司 Lighting device using organic light emitting diode
CN111354857B (en) * 2018-12-20 2023-05-23 乐金显示有限公司 Lighting device using organic light emitting diode
CN114447238A (en) * 2020-10-30 2022-05-06 财团法人纺织产业综合研究所 Electroluminescent wire
CN114447238B (en) * 2020-10-30 2024-02-02 财团法人纺织产业综合研究所 Electroluminescent wire

Also Published As

Publication number Publication date
KR101617877B1 (en) 2016-05-03
KR20140092710A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
WO2014112821A1 (en) Organic light-emitting diode
TWI673894B (en) Organic electroluminescent device
US6524728B1 (en) Organic electroluminescent device
TWI564273B (en) Organic compounds and organic light emitting device comprising the same
CN105153130B (en) Triazine derivative electron transport compound and its organic electroluminescence device
CN107987009A (en) A kind of carbazole derivates and application thereof and organic electroluminescence device
WO2012005540A2 (en) Organic light-emitting device and method for manufacturing same
TW201431864A (en) Compound for organic electroluminescent elements, and organic electroluminescent element
CN109336772A (en) A kind of triaromatic amine compound containing spiro structure and application thereof and luminescent device
CN108658953A (en) A kind of compound based on dibenzofurans and carbazole and application thereof and luminescent device
US20190096318A1 (en) Light emitting diode and display device including the same
CN108299388A (en) A kind of phenanthrene derivatives and application thereof and organic electroluminescence device
CN108997239A (en) A kind of compound of cyano-containing and application thereof and organic electroluminescence device
WO2015065074A1 (en) Organic light emitting diode, and display device and illumination including same
WO2010140482A1 (en) Organic electroluminescent device
KR20200087758A (en) Organic light emitting device
WO2024008099A1 (en) Organic matter, light-emitting device, laminated light-emitting device, display substrate and display apparatus
CN107935999A (en) A kind of naphtho- benzofuran compound and application thereof and organic electroluminescence device
CN107417677A (en) A kind of carbazole pyridines organic electroluminescent compounds and its organic electroluminescence device
WO2022156313A1 (en) Material for forming blue light-emitting layer, light-emitting device, light-emitting substrate, and light-emitting apparatus
CN111740020B (en) High-efficiency long-service-life blue light device
WO2016021784A1 (en) Organic light-emitting element
CN108658789A (en) A kind of triaromatic amine compound containing fluorenes and application thereof and luminescent device
JP2012244143A (en) Organic light emitting device
US7618718B2 (en) Light-emitting material and organic electroluminescent device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14741037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14741037

Country of ref document: EP

Kind code of ref document: A1